NEES.org will be intermittently unavailable Saturday, January 3, for scheduled maintenance. All tool sessions will be expired. We apologize for any inconvenience that may occur.

Support

Support Options

Submit a Support Ticket

 

Hybrid Simulation and Real-time Hybrid Simulation Resources in the NEEShub

Version 42
by Amin Maghareh
Version 156
by Amin Maghareh

Deletions or items before changed

Additions or items after changed

1 -
This wiki page provides a list of resources within the NEEShub related to hybrid simulation (HS) and real-time hybrid simulation (RTHS) for earthquake engineering. These technologies are enabling researchers to conduct a wide array of experiments to examine the behavior of structures under realistic conditions.
+
This wiki provides a list of resources within the NEEShub related to hybrid simulation (HS) and real-time hybrid simulation (RTHS) for earthquake engineering. These technologies are enabling researchers to conduct a wide array of experiments to examine the behavior of structures under realistic loading conditions.
2 +
----
3 +
To join the hybrid simulation group and be pointed toward resources and discussions about hybrid simulation, please go to: [http://nees.org/groups/hybrid_simulation_workshop Hybrid Simulation Workshop] and click on the big "Join Group" button shown in orange on the left.
4 +
----
5 +
'''HYBRID SIMULATION (HS):''' Hybrid simulation is a cost-effective experimental technique to evaluate the dynamic performance of large or full scale civil structures. In hybrid simulation, the rate-dependent behavior of a civil structure, including inertial and damping effects, is simulated numerically while the displacement-dependent behavior is evaluated through experimentation. Furthermore, through the technique of substructuring, a structure (total or reference structure) can be partitioned into, (1) a physical (or experimental) substructure, which usually includes the more complex components and (2) a numerical (or computational, analytical) substructure, which usually includes well-understood behavior that can be captured by numerical models. The coupling between the two substructures is achieved by enforcing equilibrium and compatibility at the interface using a transfer system such as servo-hydraulic actuators.
6 +
----
7 +
'''REAL-TIME HYBRID SIMULATION (RTHS):''' Advances in embedded systems with hard real-time computing capabilities have facilitated the use of real-time hybrid simulation methods. Compared to HS, RTHS offers the capability of accurately representing the rate-dependent behavior of the physical components while examining the global performance (the reference structure) and local performance (the physical substructure). In RTHS, the interface interaction between the substructures is enforced by servo-hydraulic actuators or a shake table which act as the transfer system. A transfer system must be controlled to ensure that all interface boundary conditions are satisfied in real time. Performance of RTHS are functions of four major factors (1) the overall dynamics of the total structure (2) the accuracy of the numerical substructure (3) how the total structure is partitioned into numerical and physical substructures (4) how well the interface boundary conditions are achieved by the transfer system.
8
9 -
'''HYBRID SIMULATION (HS)'''
+
[[Image(RTHS.GIF, 500px, align=center)]]
10
11 -
Hybrid simulation is a cost-effective experimental technique to evaluate the dynamic performance of large civil structures. In hybrid simulation, a civil structure is partitioned into two substructures, (1) physical substructure, which usually includes more complex components and (2) numerical substructure, which usually includes well-studied components. And the coupling between the two substructures is achieved by enforcing equilibrium and compatibility at the interface.
+
A typical RTHS system consists of cyber and physical components.
12
13 +
'''A. Cyber Components:'''
14 +
These components execute user programmed digital functions (numerical model and transfer system motion control scheme) and while communicating with the physical world through I/O and analog sensing and actuation systems. A real-time kernel is included to meet the time scale constraints of RTHS. Cyber components include,
15
16 -
'''REAL-TIME HYBRID SIMULATION (RTHS)'''
+
• Numerical Substructure: Portion of the total structure included in the numerical model.
17
18 -
Advances in embedded systems with hard real-time computing capabilities have facilitated the use of real-time hybrid simulation methods. Real-time hybrid simulation, which is performing hybrid simulation at real time, offers the capability of preserving rate dependence while examining the global performance (the reference structure) and local performance (the physical substructure). In RTHS, the interface interaction between the substructures is enforced by servo-hydraulic actuators or shake table which act as a transfer system. The transfer system should be designed and controlled to ensure that all the interface boundary conditions are satisfied at real time. It is known that the stability and performance of RTHS are functions of three major factors, (1) the overall dynamics of a reference system, (2) how a reference system is partitioned into numerical and physical substructures, and (3) how well the interface boundary conditions are met by a transfer system.
+
• Transfer System Control: Digital controller is included to enable synchronization between numerical and physical substructures.
19
20 +
• Visualization and Control Dashboard: User interfaces and data logging components facilitate operation and visualization results during a hybrid experiment.
21
22 -
A typical RTHS system usually consists of the cyber and physical components,
+
'''B. Physical components:'''
23 +
This term refers to the portions of the reference structure that are present in the laboratory, as well as the sensors and transfer system that are used for performing the experiment. In RTHS, measured responses are fed back to the cyber components in real time. Physical components include,
24
25 -
'''Cyber Components:'''
+
Physical Substructure: Portion of the reference structure included in the physical specimen.
26 -
Those components that execute user programmed digital components (numerical model and actuator motion control scheme) and subsequently communicate with the sensing and analog control system through I/O modulus. Real-time kernel is included to meet the time scale constrains of RTHS. Cyber components usually include,
+
27 -
+
28 -
Numerical Substructure (or Computational Substructure): Numerical model of the well-studied components in the reference structure.
+
29 -
+
30 -
• Transfer System Control: Digital controller is usually included to further enhance the synchronization between computational and experimental substructures.
+
31
32 -
• Visualization and Control Dashboard: User interfaces can be included to facilitate test operation and visualize results during the tests.
+
• Sensing System: In RTHS, sensors, e.g. accelerometers, LVDTs, force transducers, etc., are used to measure the restoring force and local response for transfer system control feedback of the physical substructure and monitor the performance.
33 -
+
34 -
'''Physical components:'''
+
35 -
Physical components usually include,
+
36 -
+
37 -
• Physical Substructure: It includes more complex components of the reference structure and it will be constructed in the lab.
+
38 -
+
39 -
• Sensing System: In HS and RTHS, different sensors, e.g. accelerometers, LVDTs, force transducers, etc., are used to measure the restoring force of the physical substructure and monitor the performance.
+
40 -
+
41 -
• Transfer System: The interface interaction between the substructures is enforced by servo-hydraulic actuators or shake table which act as a transfer system.
+
42
43 +
• Actuation System: The interface interaction between the substructures is enforced by servo-hydraulic actuators or a shake table which acts as a transfer system.
44
45
46 = List of Resources =
47
48 == Projects ==
49 +
* [http://nees.org/warehouse/project/24 Behavior of Braced Steel Frames With Innovative Bracing Schemes - A NEES Collaboratory Project ]
50 * [http://nees.org/warehouse/project/4 Real-time Fast Hybrid Testing Steel Frame Test ]
51 +
* [http://nees.org/warehouse/project/135 Hybrid Simulation and Shake-Table Tests on RC Buildings With Masonry Infill Walls ]
52 +
* [http://nees.org/warehouse/project/605 International Hybrid Simulation of Tomorrow's Braced Frame Systems ]
53 * [http://nees.org/warehouse/project/21 Semiactive Control of Nonlinear Structures ]
54 * [http://nees.org/warehouse/project/711 Advanced Servo-Hydraulic Control and Real-Time Testing of Damped Structures ]
55 -
* [http://nees.org/warehouse/project/685 Framework for Development of Hybrid Simulation in an Earthquake Impact Assessment Context ]
+
* [http://nees.org/warehouse/project/648 Performance-Based Design and Real-Time Large-Scale Testing to Enable Implementation of Advanced Damping Systems ]
56 -
* [http://nees.org/warehouse/project/570 International Hybrid Simulation of Tomorrow's Braced Frame Systems. ]
+
* [http://nees.org/warehouse/project/972 Development of a Real-Time Multi-Site Hybrid Testing Tool for NEES ]
57 -
* [http://nees.org/warehouse/project/972 Development of a Real-Time Multi-Site Hybrid Testing Tool for NEES ]
+
* [http://nees.org/warehouse/project/912 Collapse Simulation of Multi-Story Buildings Through Hybrid Testing ]
58 * [http://nees.org/warehouse/project/1135 Development and Validation of a Robust Framework for Real-time Hybrid Testing ]
59 * [http://nees.org/warehouse/project/973 Real-Time Hybrid Simulation Test-Bed for Structural Systems with Smart Dampers ]
60 +
* [http://nees.org/warehouse/project/676 Performance-based design of squat concrete walls of conventional and composite construction ]
61 +
* [http://nees.org/novel-hybrid-simulation EAGER: Next Generation Hybrid Simulation, Evaluation and Theory ]
62 +
* [http://nees.org/warehouse/project/685 Framework for Development of Hybrid Simulation in an Earthquake Impact Assessment Context ]
63 +
64
65 == Tools ==
66 * [http://nees.org/resources/nhcp NHCP ]
67 * [http://nees.org/resources/openfresco OpenFresco ]
68 * [http://nees.org/resources/uisimcor UI-SimCor ]
69 * [http://nees.org/resources/realtimeframe2d RT-Frame2D ]
70
71 == Publications ==
72 * [http://nees.org/resources/676 Real-time Hybrid Simulation Benchmark Study with a Large-Scale MR Damper ]
73 * [http://nees.org/resources/670 Comparison of 200 KN MR Damper Models for use in Real-time Hybrid Simulation ]
74 * [http://nees.org/resources/5310 Evaluation of Structural Control Strategies for Improving Seismic Performance of Buildings with MR Dampers Using Real-Time Large-Scale Hybrid Simulation ]
75 * [http://nees.org/resources/561 A Tracking Error-Based Adaptive Compensation Scheme for Real- Time Hybrid Simulation ]
76 * [http://nees.org/resources/559 Servo-Hydraulic Actuator Control for Real-Time Hybrid Simulation ]
77 * [http://nees.org/resources/674 Accommodating MR Damper Dynamics for Control of Large Scale Structural Systems ]
78 * [http://nees.org/resources/693 Real-Time Hybrid Testing of an MR Damper for Response-Reduction (Dissertation) ]
79 * [http://nees.org/resources/2668 Hybrid Simulation Evaluation of Innovative Steel Braced Framing System ]
80 * [http://nees.org/resources/4494 Increasing Resilience in Civil Structures Using Smart Damping Technology (Dissertation)]
81 -
* [http://nees.org/resources/4699 Evaluating Modeling Choices in the Implementation of Real-time Hybrid Simulation ]
+
* [http://nees.org/resources/5756/download/Paper_550.pdf Evaluating Modeling Choices in the Implementation of Real-time Hybrid Simulation ]
82 -
* [http://nees.org/resources/5306 Final Report: Evaluation of a real-time hybrid simulation system for performance evaluation of structures with rate dependent devices subjected to seismic loading ]
+
83 * [http://nees.org/resources/5023 Model-Based Framework for Real-Time Dynamic Structural Performance Evaluation ]
84 * [http://nees.org/resources/5065 Development of a Robust Framework for Real-Time Hybrid Simulation: from Dynamical System, Motion Control to Experimental Error Verification (Dissertation)]
85 * [http://nees.org/resources/5059 Development and validation of a real-time computational framework for hybrid simulation of dynamically-excited steel frame structures (Dissertation)]
86
87 == Reports ==
88 * [http://nees.org/resources/3834 NEES Vision Report on Computational and Hybrid Simulation (Committee Report) ]
89 -
* [http://nees.org/resources/690 Advanced Servo-Hydraulic Control And Real-Time Testing Of Damped Structures ]
90 -
* [http://nees.org/resources/790 Semiactive Control of Nonlinear Structures ]
91 * [http://nees.org/resources/4251 Development and Validation of a Robust Actuator Motion Controller for Real-time Hybrid Simulation Applications ]
92 * [http://nees.org/resources/5080 Development and Validation of a Computational Tool for Real-time Hybrid of Steel Frame Structures ]
93 * [http://nees.org/resources/5414 Hybrid Testing in NEESR Projects ]
94 +
* [https://nees.org/resources/7157 Hybrid Simulation Survey Report, July 2013]
95 +
* [https://nees.org/resources/7155 Hybrid Simulation Workshop Report, September 2013]
96 +
* [https://nees.org/resources/7702 Primer and Dictionary for HS and RTHS, March 2014]
97
98 == Workshops ==
99 * [http://nees.org/warehouse/project/572 CU/NEES Fast Hybrid Testing Workshop ]
100 * [https://nees.org/events/details/41 Hybrid Simulation Workshop at NEES@Berkeley ]
101 * [https://nees.org/events/details/71 Advances in Real-Time Hybrid Simulation Workshop at NEES@Lehigh ]
102 -
* [http://nees.org/groups/4254 Hybrid Simulation Workshop @ Harbin Institute of Technology ]
103
104 == Multimedia ==
105 * [https://nees.org/resources/4625 NEES@Berkeley project highlight: NEES TIPS Seismic Isolation Hybrid Simulation ]
106 * [https://nees.org/resources/5298 NEES@Berkeley project highlight: International Hybrid Simulation of Tomorrow's Braced Frame ]
107 -
* [https://nees.org/resources/5296 NEES@Berkeley project highlight: Hybrid Testing of Squat RC Shear Walls ]
+
* [https://nees.org/resources/5296 NEES@Berkeley project highlight: Hybrid Testing of Squat RC Shear Walls ]
108 +
* [https://nees.org/resources/5789 Pseudo-dynamic Hybrid Simulation of a Six-Story Building with Self-Centering Energy Dissipating (SCED) Braces ]
109 +
* [https://nees.org/resources/5919 Small-scale Hybrid Simulation ]
110 +
* [https://nees.org/resources/5914 Non-contact Instrumentation (CABER) ]
111 +
* [https://nees.org/resources/5907 UI-SimCor ]
112 +
* [https://nees.org/resources/5900 Multi-Site Soil-Structure-Foundation Interaction Test ]
113 +
* [https://nees.org/resources/5891 Hybrid Simulation of Semi-rigid Frames ]
114 +
* [https://nees.org/resources/5897 Controlled Rocking of Steel Frame ]
115 +
* [https://nees.org/resources/5895 CABER - Hybrid Simulation of a Curved 4-Span Bridge under Complex Earthquake Motion ]
116 +
* [http://nees.org/resources/6627 Large-Scale Real Time Hybrid Simulation for Validation of Advanced Damping Systems ]
117 +
* [http://nees.org/resources/7126/video?resid=7127 NEES@Illinois MUST-SIM Facility: Physical Test and Hybrid Simulation Capabilities – Expanding the State of the Art webinar]
118 +
== Computational Models ==
119 +
* [http://nees.org/resources/6968 Virtual RTHS Sample Using xPC ]
120 +
* [https://nees.org/resources/6984 A Real Time Hybrid Simulation Demo Code ]
121 +
* [https://nees.org/resources/6416 Modeling of Distributed Real-time Hybrid Simulation ]